skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jolly, MK"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The epithelial-mesenchymal transition (EMT) and the corresponding reverse process, mesenchymalepithelial transition (MET), are dynamic and reversible cellular programs orchestrated by many changes at both biochemical and morphological levels. A recent surge in identifying the molecular mechanisms underlying EMT/MET has led to the development of various mathematical models that have contributed to our improved understanding of dynamics at single-cell and population levels: (a) multi-stability—how many phenotypes can cells attain during an EMT/MET?, (b) reversibility/irreversibility—what time and/or concentration of an EMT inducer marks the “tipping point” when cells induced to undergo EMT cannot revert?, (c) symmetry in EMT/MET—do cells take the same path when reverting as theytook during the induction of EMT?, and (d) non-cell autonomous mechanisms—how does a cell undergoing EMT alter the tendency of its neighbors to undergo EMT? These dynamical traits may facilitate a heterogenous response within a cell population undergoing EMT/MET. Here, we present a few examples of designing different mathematical models that can contribute to decoding EMT/MET dynamics. Key words Mathematical modeling, Epithelial-mesenchymal plasticity, Nongenetic heterogeneity,Multi-stability, Epithelial-mesenchymal heterogeneity 
    more » « less